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Abstract
We investigate a microscopical structure in a chain of cars waiting at a red
signal on signal-controlled crossroads. A one-dimensional space-continuous
thermodynamical model leading to an excellent agreement with the data
measured is presented. Moreover, we demonstrate that an inter-vehicle spacing
distribution disclosed in relevant traffic data agrees with the thermal-balance
distribution of particles in the thermodynamical traffic gas (discussed in [1])
with a high inverse temperature (corresponding to a strong traffic congestion).
Therefore, as we affirm, such a system of stationary cars can be understood as
a specific state of the traffic sample operating inside a congested traffic stream.

PACS numbers: 05.40.−a, 89.40.−a, 47.70.Nd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The investigation of various transport systems is currently one of the prominent subjects
of physics. The intention of such research is to describe these systems (or phenomena)
quantitatively, create their appropriate models (theoretical or numerical), and finally obtain
the exact or numerical outputs comparable to real situations. Higher aspirations of such
research might be finding a certain connection among the different phenomena and revealing
a possible universality.

Currently, one of the strongly accented fields is an investigation of queuing systems.
Within this field many varied topics have been discussed, for example, a wide-ranging spectrum
of vehicular traffic problems [2], pedestrian dynamics [3], escape panic [4], longitudinal
parking of cars on a street [5, 6], parallel parking [7, 8] and public transport in some Latin
America countries [9, 10]. All these subjects are closely connected to the random matrix
theory, theory of chaos or theory of particle gases (see the references cited above). The main

1751-8113/08/205004+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/20/205004
mailto:milan.krbalek@fjfi.cvut.cz
http://stacks.iop.org/ JPhysA/41/205004


J. Phys. A: Math. Theor. 41 (2008) 205004 M Krbálek

goal of this paper is to extend the set of queuing systems mentioned above by a stationary
ensemble of cars waiting at a red signal on signal-controlled crossroads (see also [11]).

Moreover, we are aiming to create a one-dimensional model of point-like vehicles
producing the same inter-vehicle gap distributions as those detected among cars standing
on signal-controlled intersections. In the second part of this paper, we demonstrate that such a
model can be interpreted (on a microscopical level) as a thermodynamical gas of dimensionless
particles exposed to a thermal bath. This analogy allows us, as we assert, to find an exact
form of relevant spacing distribution which can be consequently compared to the realistic gap
statistics.

2. Describing the system

The traffic data analysed in this work were measured over a few days on a multi-lane
intersection located near the center of Prague. This intersection is a constituent of an extensive
network of roads and crossroads inside the internal metropolis and is therefore strongly
saturated almost all day. Furthermore, the time interval between two green signals (on one
crossroad) is very short, which means that some cars are not able to reach the threshold of the
following intersection (during one green phase) and therefore have to wait for another green
light. This fact finally leads to a substantial decrease in average velocity of vehicles moving
between crossroads, i.e. one can observe the effects usually detected in a congested traffic
regime (see [2]). Bumper-to-bumper distances ri between subsequent cars ((i + 1)th and ith
ones) waiting at a red signal (in one direction only) were measured. The data file contains
5022 digitally gauged events showing the mean inter-vehicle gap approximately equal to
149 cm. The clearances were measured directly using the laser technology.

More detailed statistical analysis uncovers that a probability density p(r) for distance
r between neighbouring cars shows a similar behaviour to that investigated between the
eigenvalues of random matrices (see [12]), zeros of Riemann zeta function (see [13]) or vehicles
moving inside the traffic stream on the freeways (see [1]). Such a behaviour (see figure 2)
demonstrates the presence of repulsive interactions among the elements in question. As is
well known, a spacing distribution of non-interacting elements shows a different distribution,
in concrete: Poisson probability density

p(r) = exp[−r] (r � 0).

Since the traffic interaction (in the local sense, of course) is usually quantified as power-law
repulsion among the successive vehicles (see [1] and [14]) let us suppose that a potential
energy of the ensemble investigated reads as

U(r1, r2, . . . , rN) =
N∑

i=1

r−1
i . (1)

Herein we assume that the stationary traffic state analysed in this paper (i.e. the queue of
waiting cars) is determined by the preceding process—traffic flow towards the intersection.
Evidently, moving in the traffic sample the driver is interacting with other cars and optimizing
his/her motion to reach the threshold of the crossroad as soon as possible and, at the same time,
avoiding a crash with the preceding vehicle. Such behaviour corresponds to the thermodynamic
effects governing the ensemble into a local thermal equilibrium (see [1] for details).
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(a)

(b)

Figure 1. Graphic representation of the model. The upper subplot depicts the initial state of
the numerical scheme described in the text whereas the bottom subplot demonstrates the final
stationary state of the traffic sample, i.e. the state when the cars are waiting for green signal. We
note that the squares represent the model particles with the leading car being picked out.

3. Modified Metropolis algorithm

Accepting the above-mentioned assumptions on thermodynamical aspects of the issue we
formulate the following one-dimensional traffic model based on principles of statistical
physics. Consider N + 1 point-like particles (cars) located randomly (or equidistantly if
advantageous) on a line (or on a circle) so that the mean gap among them is one, i.e.

N∑
i=1

ri = N, (2)

where ri represents the gap between (i + 1)th and ith particles. Thus, the ordered positions
x1 > x2 > · · · > xN+1 constitute the initial state for our simulation (see figure 1). The
particles move along the line (or along the circle) accepting the undermentioned rules until
the leading car reaches a fixed point (the threshold of new crossroads). In accord with a
realistic situation the overtaking cars are not permitted, i.e. the particles cannot change their
order. Let βmodel � 0 denote the inverse temperature specifying the measure of chaos inside
the ensemble simulated. We assume βmodel to be the only significant parameter of the model.
The car positions are repeatedly updated (we use 20 000 steps in our version) according to the
following rules:

(1) The potential energy U0 (using formula (1)) for the actual set of locations
{x1, x2, . . . , xN+1} is calculated.

(2) We pick an index j ∈ {1, 2, . . . , N + 1} at random.
(3) We draw a random number δ equally distributed in the interval (0, 1).

(4) We compute an anticipated position x ′
j = xj + δ of the j th element. Because of singularity

in the potential energy (1) the model particles cannot change their order. Therefore we
accept x ′

j only if x ′
j < xj−1.

(5) We calculate a value of potential energy U ′ determined for configuration
{x1, x2, . . . , xj−1, x

′
j , xj+1, . . . , xN+1}.

(6) If U ′ � U0 the j th particle position take on a new value x ′
j . If U ′ > U0 then the Boltzmann

factor

w = exp[−βmodel�U ],
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Figure 2. Inter-vehicle gap statistics p(r). Bars represent the probability density for bumper-to-
bumper distance among the cars waiting at a red signal on intersections (measured in Prague).
Data were re-scaled so that the mean spacing is equal to one. Points display the optimized result of
the numerical scheme (Metropolis algorithm) for N = 100 and βmodel = 1.45. Finally, the curve
displays distribution (3) for the fitted value βfit ≈ 1.2488 (obtained by the number variance test.)

where �U = U ′ − U0, should be compared with a random number r equally distributed
in (0, 1). Provided that the inequality w > r is fulfilled the j th particle position takes on
the new value x ′

j too. Otherwise, the original configuration {x1, x2, . . . , xN+1} remains
unchanged.

The sketched procedure represents a modified Metropolis algorithm originally developed
for chemistry purposes (in [15]). This algorithm belongs to the category of Monte Carlo
simulations (see [17]) which have recently been used for numerical modelling of statistical
systems (as demonstrated in [16], for example). The elaborated scheme of Metropolis ensures
a relaxation of ensemble into a thermal-balance state when the energy fluctuates around a
constant value being independent of initial configuration of particles (see figure 3). After
reaching the thermal equilibrium (i.e. after approximately 5000 updates of configuration
(Monte Carlo steps), as visible in figure 3) the ensemble lingers in this state until the simulation
is interrupted. Then, as observed, corresponding probability density for inter-particle gaps
depends on the inverse temperature βmodel only.

Our aim is to find the optimal value of inverse temperature βmodel so that the gap distribution
p(r) corresponds to that measured among the cars on crossroads. Using a χ2-method (i.e.
minimizing the sum of squares-deviations between two distributions in question) one can find
that optimal value of βmodel is approximately 1.45. Concretely, for a fixed value of βmodel

the distribution p(r) is obtained. Then the χ2-test between empirical data and p(r) could
be evaluated. The optimal value of βmodel is the one for which the corresponding sum of
squares-deviations is minimal. To conclude, for value of βmodel = 1.45 both processes (traffic
and Metropolis procedures) generate practically the same gap distributions (see figure 2).
Thus, the introduced procedure could represent a realistic model for behaviour of the cars in
the vicinity of the chosen intersection.

4. Terminal state of thermodynamical traffic gas

As explored in papers [1, 14, 18], the traffic flow can be understood (on a microscopical level)
as a thermodynamical gas of interacting cars exposed to a heat bath of inverse temperature β.
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Figure 3. Relaxation of the system into the thermal equilibrium. Dashed and continuous lines
(see the upper-left or lower-left corners, respectively) display the energy value (1) for N = 100
and βmodel = 1.45 during the run of Metropolis procedure (having 20 000 steps) for random (or
equidistant) initial locations of elements, respectively. Plotted is the average value (calculated for
100 repeated realizations of Metropolis). The grey curve represents the energy value (1) for one
realization of Metropolis (when initial particle positions were chosen equidistantly).

Besides, the latter has an immediate relation to the traffic density. If accepting such an approach
we describe the traffic ensemble (on the move) as a circular gas of point-like particles whose
hamiltonian reads as

H =
∑

i

(vi − v)2 +
∑

i

r−1
i ,

where vi and ri represent an ith car velocity and gap to the previous car, respectively. Quantity
v denotes the desired velocity of the ensemble. Then (see the exact calculation in [1]) the
derived probability density pβ(r) for a gap r among the successive vehicles is

pβ(r) = A exp[βr−1 − Br], (3)

where the constants A and B are calculated via two normalization equations∫ ∞

0
pβ(r) dr =

∫ ∞

0
rpβ(r) dr = 1.

According to [1] the following relations hold true:

B ≈ β +
3 − e−√

β

2
,

A ≈
√

2β + 3 − e−√
β

√
8βK1(

√
4β2 + 6β − 2β e−√

β)
.

Herein K1 stands for a Mac-Donald’s function (modified Bessel’s function of the second kind)
of the first order.

Since the situation investigated in this paper is without any doubt the result of a preceding
traffic flow (see [11]) it is meaningful to expect that the clearance distribution among the
cars waiting at the red-light-signal will be of the form (3). Indeed, as confirmed by an
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appropriate statistical analysis of the collected data (discussed later) the measured gap statistics
(see figure 2) corresponds to the probability density (3) if the inverse temperature β of the
thermodynamical model is

βfit ≈ 1.2488. (4)

We denote that this value has been determined by a more sophisticated method presented
in the following section. In addition, a positive comparison between the corresponding
gap distributions supports the hypothesis that traffic stream can be locally understood as
a stochastic gas whose elements are repulsed by the forwardly-directed nearest-neighbour
power-law potential depending on a reciprocal distance between successive gas elements.
This correspondence, however, does not mean that traffic is a thermodynamical system, of
course.

5. Testing the statistical variance of data

If trying to find a more robust argument for an assertion on statistical similarities between
the process investigated and the traffic model we can apply some of the techniques originally
developed for purposes of the random matrix theory (see the book [12]). A usual way to
quantify the behaviour of variances among the statistical data is in applying so-called number-
variance test. Such a test is defined as follows.

Consider N spacings r1, r2, . . . , rN between the successive vehicles (or particles of model)
and suppose that the mean distance taken over the complete ensemble is re-scaled to one, i.e.

N∑
i=1

ri = N.

Dividing the interval [0, N ] into subintervals [(k − 1)L, kL] of a length L and denoting by
nk(L) the number of cars in the kth subinterval, the average value n(L) taken over all possible
subintervals is

n(L) = 1

�N/L�
�N/L�∑
k=1

nk(L) = L,

where the integer part �N/L� stands for the number of all subintervals included in the interval
[0, N]. Number variance �n(L) is then defined as

�n(L) = 1

�N/L�
�N/L�∑
k=1

(nk(L) − L)2

and represents (in a traffic instance) the statistical variance in the number of vehicles operating
at the same time inside a fixed part of the road of a length L.

As is well known from random matrix theory the number variance can be explicitly derived
from the relevant spacing density pβ(r). The significant advantage is remarkable sensitivity of
the number variance �n(L) to any change in the probability density pβ(r)—i.e. to any change
in the potential U(r1, r2, . . . , rn) also. Whereas the number variance of independent events
(or non-interacting elements) is the identity �n(L) = L, for a thermodynamical traffic gas
with non-zero inverse temperature β there has been numerically calculated (in [18]) a different
behaviour, concretely: a linear dependence

�n(L) ≈ χL + γ (5)
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Figure 4. Results of the number-variance test. Plus signs stand for the value �n(L) calculated for
the collected traffic data, whereas points represent the same quantity for particles of Metropolis
model (where βmodel = 1.45). Dash-dotted line visualizes function �n(L) = L representing the
number variance of independent events. The solid curve displays function (5) calculated for the
optimal value βfit ≈ 1.2488 obtained by the χ2-fit to the traffic data.

with a slope

χ ≈ 1

2.4360 β0.8207 + 1
� 1

and a shift

γ ≈ β

5.1926 β + 2.3929
� 0.

As understandable now, the comparison between the number variance of the collected data and
function (5) can then be used (together with the comparison of the relevant gap distributions)
as a robust fitting procedure which is capable of revealing more detailed nuances among
the distributions compared. If applied to our topic, such a procedure generates the optimal
value (4) for which the exactly determined number variance (5) corresponds to the measured
data (see figure 4). Note that both of these curves �n(L) are rapidly deflected from the line
visualizing the number variance of non-interacting particles. It implies the presence of a strong
repulsion among the vehicles. However, a small deviation is detected for larger L between
the traffic data (plus signs in figure 4) and Metropolis data (points in the same figure). Such
a discrepancy can be explained by the simple fact that the respective temperatures (i.e. βmodel

and βfit) differ each from other.

6. Summary and discussion

The traffic ensemble of vehicles waiting at a red-light-signal on signal-controlled crossroads
was investigated. We have introduced the thermal space-continuous time-discrete traffic model
of repulsing point-like elements based on the Metropolis algorithm. By the suitable choice
of the inverse temperature parameter there were obtained the same statistical distributions as
those produced by the real traffic process. Above that, we show that the investigated state of the
realistic traffic sample can be predicted with the help of the thermal-equilibrium state for local
thermodynamical gas whose point-like particles are repulsed by the short-range power-law
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potential (1). As demonstrated above, for the fitted value β ≈ 1.25 of reciprocal temperature
the corresponding spacing distributions are practically the same. The correspondence between
the traffic samples and presented theory is, moreover, supported by the robust test of number
variance which reveals

(1) the thermal feature of the topic—on microscopic scale;
(2) the presence of strong interactions among the cars;
(3) a deep connection between the stationary state of waiting cars and the preceding move of

the sample towards the intersection threshold.

To conclude, we assert that the configuration of vehicles waiting at a red-light-signal
on signal-controlled crossroads is a product of local thermodynamics-like processes acting
among the cars. All the accessible statistical analyses strongly support this fact. Therefore,
the observed phenomenon can be understood as traffic in an especially super-congested state.
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